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Noonan syndrome (NS), an autosomal dominant disorder, is

characterized by short stature, congenital heart defects, devel-

opmental delay, and facial dysmorphism.PTPN11mutations are

the most common cause of NS. PTPN11 encodes a non-receptor

protein tyrosine phosphatase, SHP2. Hematopoietic malignan-

cies and solid tumors are associated with NS. Among solid

tumors, brain tumors have been described in children and young

adults but remain rather rare. We report a 16-year-old boy with

PTPN11-related NS who, at the age of 12, was incidentally found

to have a left temporal lobe brain tumor and a cystic lesion in the

right thalamus. He developed epilepsy 2 years later. The tempo-

ral tumorwas surgically resected because of increasing crises and

worsening radiological signs. Microscopy showed nodules with

specific glioneuronal elements or glial nodules, leading to the

diagnosis of dysembryoplastic neuroepithelial tumor (DNT).

Immunohistochemistry revealed positive nuclear staining with

Olig2 and pERK in small cells. SHP2 plays a key role in RAS/

MAPK pathway signaling which controls several developmental

cell processes and oncogenesis. An amino-acid substitution in

the N-terminal SHP2 domain disrupts the self-locking confor-

mation and leads to ERK activation. Glioneuronal tumors

including DNTs and pilocytic astrocytomas have been described

in NS. This report provides further support for the relation of

DNTs with RASopathies and for the implication of RAS/MAPK

pathways in sporadic low-grade glial tumors including DNTs.
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INTRODUCTION

Noonan syndrome (NS, OMIM 163950) an autosomal domi-

nant disorder, first described in 1968, has an estimated preva-

lence between 1/1,000 and 1/2,500 live births [Roberts et al.,

2013]. NS is related to various genes. Mutations in the PTPN11

gene are the most frequent. PTPN11 encodes SHP2, a protein

tyrosine phosphatase (PTP). NS-associated mutations of
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PTPN11 induce hyperactivation of ERK1/2 both in vitro and in

vivo, in different cell types, in a basal state or under stimulation

by agonists [Tajan et al., 2015]. Other genes (RAS, SOS1, NRAS,

RAF1, BRAF, A2ML1, RASA2, RRAS2, LZTR1, SOS2, RIT2,

SHOC2, CBL, and PPP1CB) are implicated in the MAPK/

ERK pathways and are associated with NS and closely related

conditions [Cav�e et al., 2016; Gripp et al., 2016]. These autoso-

mal dominant disorders with RAS pathway overactivation are

now collectively named RASopathies [Roberts et al., 2013; Cav�e
et al., 2016]. These RASopathies are associated with germline

alteration of the Ras signaling pathway and present phenotypi-

cal overlap with common clinical features resembling NS. Other

signaling pathways, notably the PI3K/AKT cascade, may be

involved in some of these conditions [Tajan et al., 2015].

NS is associated with a possible increase in risk of tumor

development, including hematologic proliferations and, less fre-

quently, solid tumors. Juvenilemyelomonocytic leukemia (JMML)

has been described in PTPN11-associated NS [Tartaglia et al.,

2003]. Somatic point mutations of PTPN11 have been identified

as the main cause (35% of cases) of JMML, a rare and aggressive

myeloid malignancy of early childhood [Tartaglia et al., 2010].

Similarly, PTPN11 somatic mutations may occur, albeit rarely, in

solid tumors [Grossmann et al., 2010]. They have been observed in

pilocytic astrocytoma, admittedly always together with FGFR1

mutations [Collins et al., 2015]. Brain tumors described in NS

and other RASopathies are mainly low-grade glial or glioneuronal

tumors.

We report a patient with PTPN11-associated NS who developed

a dysembryoplastic neuroepithelial tumor (DNT). We review the

features of previously reportedDNTs tumors associated withNS to

better define this association and further analyze these tumors
FIG. 1. First resected lesion. (A) Typical glioneuronal component. (B) A n

cells. (C) Oligodendroglial nodule. (D) Significant staining of nuclei with

wileyonlinelibrary.com]
considering the role of RAS pathways in sporadic low-grade glial or

glioneuronal tumors.
CLINICAL REPORT

The male patient born at term, with no abnormality at birth,

presented slight developmental delay (language), cryptorchidism,

short stature, and dysmorphic facial features in infancy. He did not

receive GH treatment. When he was 11 years old, a holosystolic

heart murmur was diagnosed. Echocardiography revealed idio-

pathic arterial pulmonary hypertension which was successfully

medically treated.

At age 12, during evaluation after head injury, magnetic reso-

nance imaging (MRI) revealed a multicystic lesion in the left

temporal lobe extending into the insula and basal ganglia. This

was a cortical lesion without peritumoral edema or mass effect,

hypointense on T1-weighted and hyperintense on T2-weighted

sequences. No contrast enhancement was noted. These features

suggested a DNT corresponding to type 1 b MRI (polycystic-like)

[Chassoux et al., 2012]. MRI also showed a few cysts in the left

frontal lobe and a small round cystic lesion in the right thalamus.

At age 14, the patient presented atypical malaise. Video-electro-

encephalography was in favor of complex partial epilepsy. The

clinical signs, which associated several dysmorphic facial features

(hypertelorism, down-slanting palpebral fissures, low-set posteri-

orly rotated ears with fleshy helix), short stature, pubertal devel-

opment delay, moderate language deficit, cryptorchidism, and

cardiac defect, suggested NS.

At age 16, in spite of medical treatment, seizures increased, with

sustained drug resistance.MRI showed an increase of lesion size. The

left temporal lobe tumor was partially resected. No further seizures
euron floating in the mucoid matrix (↘) and oligo-like small round

anti-ERK1/2 antibody in some areas. [Color figure can be viewed at
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occurred for 6 months, but then complex partial epilepsy again

appeared and the rate, severity and duration of seizures increased.

A second surgical procedure (left anterior temporal lobectomy) was

carried out 22 months later, but treatment-resistant epilepsy with

learning disabilities nevertheless persisted.

Microscopy and immunohistochemistry were performed on

both surgical specimens. Microscopically, multifocal lesions

were seen (Fig. 1A–C). Poorly-demarcated nodules were composed

of mucoid sheets surrounded by small round cells, often arranged

in columns. Rarer nodules were composed of oligodendroglial-like

cells. On immunohistochemical staining, these cells were positive

for Olig2. Neurofilament and synaptophysin antibodies

highlighted columnar formations. A few cells expressed GFAP

but not Olig2. CD34 stained vascular structures. MIB1 index

was low (<3%) as well as P53 nuclear index. There was no staining

with IDH1-R132H and BRAF V600E antibodies but a strong

positivity in small round cells nuclei with anti-phospho-ERK1/2

antibody (Fig.1D). The diagnosis of DNT (complex form) was

established.
METHODS AND RESULTS

Mutation screening of PTPN11 was performed on genomic DNA

by bi-directional Sanger sequencing of exons and their flanking

intron-exon boundaries [Keren et al., 2004]. It revealed a germline

heterozygote mutation of PTPN11: c.922A>G leading to a p.

Asn308Asp substitution.
DISCUSSION

Malignancies have been described in NS and in related syndromes

such as Costello syndrome (CS), cardiofaciocutaneous syndrome

(CFCS), and NS with multiple lentigines (NSML; previously
TABLE I. Dysembryoplastic Neuroepithelial Tumor (DNTs) R

Reference Sex

Age (y) at

diagnosis Location of

Jongmans et al. [2011]

(patient 3)

N/A 10 Tempora

Bendel et al. [2012] M 17 Left tempo

Bendel et al. [2012] M 37 N/A

Krishna et al. [2014] M 11 Right temporal l

cerebe

Pellegrin et al. [2014] M 13 Left parie

Pellegrin et al. [2014] M 13 Right parieto-o

Kratz et al. [2015]

(patient 7)

F 6 N/A

McWilliams et al. [2016] M 8 Temporal lobe,

cerebe

Our case M 16 Left temporal an

right tha

N/A: not available
referred to as LEOPARD syndrome). Several hematologic cancers

occur in NS, particularly during childhood, at a slightly higher

proportion than in the general population. These cancers include

JMML, acute myelogenous leukemia, and B-cell acute lympho-

blastic leukemia [Tartaglia et al., 2003; Roberts et al., 2013]. Solid

tumors are also cited: rhabdomyosarcoma, granular cell tumor,

Sertoli cell tumor, neuroblastoma, and glial tumors. In mutation-

positive individuals with NS or related syndromes, compared with

the general population, a significant excess risk for all childhood

cancers combined was observed (10.5-fold increased risk) [Kratz

et al., 2015]. In a cohort study of 297 Dutch NS patients with a

PTPN11mutation, a 3.5–fold increase in the overall cancer risk up

to age 55 years was found, compared with the general population

[Jongmans et al., 2011]. In a review of the literature of brain tumors

in PTPN11-drivenNS patient, 9 DNTs, and 13 other primary brain

tumors were identified [McWilliams et al., 2016]. Our update

identified 25 tumors. Beside one medulloblastoma [Rankin et al.,

2013], all were glial or glioneuronal tumors [Sanford et al., 1999;

Takagi et al., 2000; Jongmans et al., 2005; Martinelli et al.,

2006; Fryssira et al., 2008; Schuettpelz et al., 2009; Sherman

et al., 2009; De Jong et al., 2011; Karafin et al., 2011; Bendel and

Pond, 2014; Rush et al., 2014; Kratz et al., 2015; Nair et al., 2015].

There were nine DNTs which characteristics are summarized in

Table I. While pilocytic astrocytomas are the commonest pediatric

brain tumors (brain and spinal tumors 25%) glioneuronal tumors

and DNTs are rare (<1%) [Rickert and Paulus, 2001]. With regard

to cases with epilepsy, the incidence of DNT is 17.8% of brain

tumors in adults and 23.4% in children [Louis et al., 2016]. Our

report reinforces the suggestion that DNTs appear as a non-

coincidental tumor in NS [Kratz et al., 2015; McWilliams et al.,

2016].

The PTPN11 gene encodes SHP2, a growth factor-regulated cyto-

plasmic phosphatase that controls cell growth, differentiation, and
elated to Noonan Syndrome (NS) With PTPN11 Mutations

the tumor PTPN11 Mutation Clinical event

l lobe c.179G> C

p.Gly60Ala

N/A

ral lobe c.174C> G

p.Asn58Lys

Seizure

Maternal uncle of

patient above

Seizure

obe and right

llum

p.Asp61Gly Lethargy and altered

mental status

tal lobe Exon 3 Paresthesia

ccipital lobe N/A Asymptomatic

p.Asn308Asp N/A

left and right

llum

p.Glu139Asp Headache vomiting

d frontal lobe,

lamus

c.922A> G

p.Asn308Asp

Seizure
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migration through activation of the RAS-MAPK cascade. The physi-

ological functions of SHP2 are complex. The mutations observed in

NS induce a gain of function of SHP2 [Tajan et al., 2015; Cav�e et al.,
2016]. The mutations lead to a change of conformation, locking the

enzyme in a more favorable position for catalysis inducing ERK

hyperactivation. SHP2 is involved in central nervous system devel-

opment, where it can promote ERK-dependent neurogenesis while

inhibiting STAT3-dependent gliogenesis [Gauthier et al., 2007]. The

signification of DNT remains unsettled. Multiple locations as well as

stable evolution of DNTs inNS, similarities of pathological aspects of

DNTs with developmental abnormalities in NS may suggest a

hamartomatous nature of this tumor, at least in some cases.

Our report described a patient harboring a PTPN11 muta-

tion, a gene frequently affected in NS (50%). No predominant

mutation of PTPN11 associated with DNTs seems to emerge

(Table I). Another case presented the mutation in PTPN11, p.

Asn308Asp observed in our patient. In JMML, PTPN11 p.

Thr73Ile appears to play a key role [Tartaglia et al., 2010;

Strullu et al., 2014]. The association between a specific

amino-acid change in PTPN11 and DNTs has to be further

explored; the number of reported cases with germline or

somatic mutations remaining low.

The spectrum of brain tumors described in NS reflects the

different low-grade tumors which, when occurring sporadically,

are related to dysregulated RAS/MAPK pathways and present

some pathological overlaps. Other genes implicated in RASo-

pathies have been described in sporadic low-grade gliomas,

including DNTs. Some are related to NS, such as NF1. Neuro-

fibromatosis is a RASopathy and NF1 mutations may produce a

NS phenotype, while mixed syndromes have been described

[Thiel et al., 2009]. NF1 mutations induce loss of the neuro-

fibromin activity that triggers aberrant MAPK/ERK activation.

The link between pilocytic astrocytoma and neurofibromatosis

type 1 is well known [Rodriguez et al., 2008; Louis et al., 2016].

A germline NF1 mutation was found in four epileptic patients

presenting with DNT, suggesting a non-fortuitous association

between DNTs and RASopathies [Barba et al., 2013]. FGFR1

mutations have been described in pilocytic astrocytoma and

recently in rosette forming glioneuronal tumor (RGNT). In the

latter, this anomaly could be related to a specific subtype.

FGFR1 mutations were recently reported in sporadic DNTs

and in familial cases. Constitutional and somatic FGFR1 alter-

ations and MAPK pathway activation are key events in the

pathogenesis of DNT [Rivera et al., 2016]. They were not

identified in a series of periventricular and intraventricular

DNTs, suggesting that FGFR1 could be a candidate for defining

a subtype of glioneuronal tumors including certain DNTS and

RGNTs [Gessi et al., 2016].

Activation of RAS/MAPK pathways through BRAF alterations

has been well established in low-grade pediatric glioma. MAPK

activation by gene fusions involving BRAF defined pilocytic astro-

cytoma [Jones et al., 2012]. BRAF V600E mutations known in

pilocytic astrocytoma have been described in DNT [Chapp�e et al.,
2013], and are considered the most common molecular alteration

in cortical DNTs.

These data shed light on the relationship between alterations in

MAPK pathways in particular via PTPN11.
CONCLUSION

DNT may be part of the tumor spectrum associated with

PTPN11-driven NS. It needs to be sought and recognized.

Further studies are needed to precisely evaluate the incidence

of DNT and the necessity of an increased surveillance in children

with NS. DNT, RGNT, and pilocytic astrocytoma have close

similarities in histology and in oncogenetic pathways. They may

be part of a spectrum of tumors which will soon be better defined

thanks to new molecular findings. This report provides further

support for the relation of glioneuronal tumors with RASopa-

thies, even if these tumors are heterogeneous at the genomic level

with BRAF, NF1, or PTPN11 mutations.
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